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Abstract  
In this work, we investigate drone autonomous landing scene detection via knowledge transfer. The challenges associated with aerial remote 
sensing—namely, the fact that various images have distinct representations at different altitudes or that some pictures are very similar—led 

us to use a deep convolutional neural network (CNN) that is based on knowledge transfer and fine-tuning to address the issue. Next, the 
seven classes comprise the LandingScenes-7 dataset is created. Furthermore, we use thresholding in the prediction step to take care of the 

classifier's ongoing novelty detection issue by excluding additional landing scenes. The adaptive momentum (ADAM) optimization 

technique is used in conjunction with the ResNeXt-50 backbone to facilitate our transfer learning approach. We also compare momentum 
stochastic gradient descent (SGD) optimizer with ResNet-50 backbone. ResNeXt-50, which uses the ADAM optimization method, performs 
better, according to the experiment findings. It is possible for drones to autonomously learn landing scenes using this pre-trained model and 

fine-tuning, as it achieves 97.8450% top-1 accuracy on the LandingScenes-7 dataset. 
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Introduction  
Our study delves into the autonomous landing scene identification of drones using knowledge transfer. We used a deep 

convolutional neural network (CNN) that is based on knowledge transfer and fine-tuning to address the issues related to aerial 

remote sensing, specifically the fact that different images have distinct representations at different altitudes or that some 

pictures are very similar. The LandingScenes-7 dataset is then constructed, consisting of seven classes. Moreover, we address 

the classifier's persistent novelty detection problem by removing extra landing scenes via thresholding in the prediction stage. 

To support our transfer learning strategy, we combine the ResNeXt-50 backbone with the adaptive momentum (ADAM) 

optimization technique. Additionally, we contrast the ResNet-50 backbone with the momentum stochastic gradient descent 

(SGD) optimizer. The experiment results show that ResNeXt-50 works better and employs the ADAM optimization approach. 

Given that our pre-trained model achieves 97.8450% top-1 accuracy on the LandingScenes-7 dataset, drones may be able to 

independently learn landing scenes with some fine-tuning. 

 

Related Work  
Target categorization in remote sensing photos using an efficient distributed convolutional neural network architecture and 
pre-training  
It is becoming more difficult to identify objects with similar looks using remote sensing images (RSIs) in an effective and 

efficient manner. Convolutional neural networks (CNNs) are now the dominant method for classifying targets because of their 

superior performance and strong feature representation capabilities. However, CNN relies mostly on a single computer for 

testing and training. Because processing RSIs requires a lot of time and limited hardware resources, a single system naturally 

has limitations and becomes a bottleneck. Furthermore, because of the imbalance between the model structure and the RSI 

data, the CNN model faces the problem of overfitting. Overfitting happens and results in poor prediction performance when a 

model is complicated or the training data is small. In order to tackle these issues, a distributed CNN architecture is suggested 

for RSIs target categorization, which significantly boosts the system's scalability and CNN's training performance. It enhances 

RSIs' processing effectiveness and storage capacity. Additionally, the CNN model is made more flexible and resilient by using 

the Bayesian regularization strategy to initialize the CNN extractor's weights. It assists in avoiding local optima brought on by 

inadequate RSI training pictures or an improper CNN structure, as well as overfitting. Furthermore, taking into account the 

effectiveness of the Naïve Bayes classifier, a distributed Naïve Bayes classifier is engineered to minimize the training 

expenses. The suggested system and approach work the best and improve recognition accuracy when compared to other 

algorithms. The results demonstrate that the suggested algorithms and distributed system architecture are appropriate for target 

categorization tasks in RSIs.  
Challenges, Approaches, Benchmarks, and Opportunities in Remote Sensing Image Scene Classification Combined with Deep 
Learning  
With a wide variety of applications, remote sensing image scene classification seeks to assign a set of semantic categories to 
remote sensing pictures based on their contents. Deep neural networks' potent feature learning capabilities have propelled the 
field of remote sensing picture scene categorization, which has garnered notable interest and yielded noteworthy 
advancements. Nonetheless, as far as we are aware, there hasn't been a thorough examination of current developments in deep 
learning for remote sensing picture scene categorization. This article offers a comprehensive overview of deep learning 
techniques for remote sensing picture scene categorization, including over 160 publications, in light of the field's rapid 
advancement. Specifically, we go over the three main approaches to remote sensing image scene classification and survey 
challenges: autoencoder-based, convolutional neural network-based, and generative adversarial network-based. Furthermore, 
we provide an overview of the benchmarks used in remote sensing picture scene categorization and provide a performance 
summary of over two dozen sample methods on three widely-used benchmark datasets. We conclude by talking about the 
exciting prospects for further study. 
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Using the ™-channel to improve object recognition  
We suggest adding a new channel, known as the ™-channel, to traditional RGB photos and using it for a variety of 
classification and identification tasks. With a cheap frosted glass put in front of one of the binocular cameras, a binocular 
camera is used to concurrently record the same scene in the color and frosted light channels, as seen in the new RGB-TM 
picture. The frosted glass's ability to scatter light results in an imperfect frosted light path. In this work, we provide a unique 
optimization to optimize the ℓ-channel to retain edges owing to scene radiance, directed by the RGB channel. Our RGB-TM 
pictures are effective, as shown by extensive testing findings that show significant gains in a range of scene categorization and 
object identification tasks. 

 
Locations: An Image Database of 10 Millions for Scene Identification  
Data-hungry machine learning algorithms can already do almost human-level semantic categorization on tasks like visual 
object and scene identification thanks to the growth of multi-million-item dataset efforts. We provide here the Places 
Database, a collection of 10 million scene photos annotated with scene semantic categories that provide a comprehensive and 
varied inventory of the many kinds of surroundings found around the globe. We present scene classification CNNs (Places-
CNNs) as baselines using the most advanced Convolutional Neural Networks (CNNs), which perform noticeably better than 
the earlier methods. Upon seeing the CNNs trained on Places, it becomes evident that object detectors function as a middle-tier 
representation for scene categorization. Together with Places-CNNs, the Places Database provides a fresh resource to steer 
future work on scene identification difficulties because to its great variety and coverage of exemplars. 

 
SUN Database: Examining an Extensive Range of Scene Categories  
Understanding the complex and varied visual settings that comprise our everyday lives is necessary for progress in scene 
comprehension. In pursuit of this goal, we provide the Scene Understanding database, an almost complete set of scenes 
classified with the same degree of detail as spoken language. There are 131,072 photos in the database, organized into 908 
different scene types. We do a thorough study of co-occurrence statistics and the contextual link using this data, which has 
both scene and item labels accessible. In two human tests, we assess the accuracy of human scene identification and analyze 
the typicality of each picture within its assigned scene category to get a deeper understanding of this extensive taxonomy of 
scene categories. We next carry out three computational experiments: "scene detection," where we loosen the assumption that 
a single picture represents a single scene category, indoor vs outdoor scene categorization, and scene identification using 
global image attributes. The link between human and machine recognition mistakes as well as the relationship between picture 
"typicality" and machine recognition accuracy are finally explored, and we compare the results of human studies to the 
performance of machines. 

 

Adam: An Approach to Probabilistic Optimization  
We present Adam, an adaptive lower-order moment estimator-based technique for first-order gradient-based optimization of 
stochastic objective functions. Large problems with lots of data and/or parameters are a good fit for this approach since it is 
easy to construct, computationally efficient, requires minimal memory, and is invariant to diagonal rescaling of the gradients. 
Non-stationary targets and issues with very noisy or sparse gradients may also benefit from this approach. The hyper-
parameters are usually easily interpreted and don't need to be adjusted too much. There is a discussion of some links to similar 
algorithms that Adam was influenced by. Additionally, we examine the algorithm's theoretical convergence features and 
provide a regret constraint on the convergence rate that is on par with the most well-known outcomes under the online convex 
optimization framework. Empirical findings show that Adam performs well in real-world scenarios and holds its own against 
other stochastic optimization techniques. In conclusion, we address Ada Max, an Adam variation grounded in the infinite 
norm. 

 

Methodology 
1. Get label: Using this module we will get the label  
2. calculate metrics: Using this module, metrics can be calculated  
3. Predict landing: Using this module we will predict the landing position 

Results and Discussion  
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The training graph for the ResNext50 is shown above. The x-axis shows the training epoch, and the y-axis shows the accuracy 
and loss values. The accuracy line is represented  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
by a green line, while the loss line is represented by a blue line. As the epoch progressed, the accuracy increased and 
approached 1, while the loss decreased. 
 
The predict function is defined in the above graph. It takes an input picture path and, using an extended ensemble object, 
classifies the provided image scenes; in the example scene above, it is classified as a building. 
 

Conclusion  
The authors of this research investigate drone knowledge transfer for autonomous landing scene detection. We use a deep 
convolution neural network (CNN) based on knowledge transfer and fine-tuning to address the issue, taking into account the 
challenges in aerial remote sensing, particularly the fact that some pictures are very similar or the same scene has distinct  
representations at various altitudes. Next, a dataset called LandingScenes-7 is created and classified into seven classifications. 
Additionally, the classifier still struggles with novelty detection, which we solve by eliminating additional landing scenes 
using the thresholding method in the prediction step. Using the adaptive momentum (ADAM) optimization technique, we use 
the transfer learning approach based on the ResNeXt-50 backbone. The momentum stochastic gradient descent (SGD) 
optimizer and the ResNet-50 backbone are also contrasted. 
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